This Presentation is attributable to Dr Roger Catchpole and may not be reproduced or copied

Ecological Networks, Connectivity and Conservation: Back to Basics

Dr Roger Catchpole Director – Aspen International Honorary Fellow – University of Edinburgh

National Ecological Networks Meeting, 6-7 February 2013, National Museum of Scotland, Edinburgh

The Challenge

"Systems of nature reserves and their interconnections that make a fragmented natural system coherent, so as to support more biological diversity..." - Jongman (2004)

"...a set of ecosystems of one type, linked into a spatially coherent system through flows of organisms, and interacting with the landscape matrix in which it is embedded." - Opdam *et al.* (2006)

"... a representation of the answers to two questions: (1) who eats whom?, and (2) at what rate?" - Ulanowicz (2004)

Literature

Aspen International

Spatially Explicit Initiatives

Aspen International

Knowledge Gaps

The great divide

The gap between theory and practice remains surprisingly wide in conservation biology.

"Conservation biologists write and publish papers, which the practitioners seldom read. The practitioners, in turn, rarely document their actions or collate their data in forms useful to conservation biologists. Typically, practitioners make decisions based on personal experience and intuition. Their knowledge stays untapped by others — and can be impervious to fresh scientific findings."

Vol 450 | Issue no. 7167 | 8 November 2007

Member States shall endeavour to encourage the management of features of the landscape which are of major importance for wild fauna and flora. Such features are those which, by virtue of **their linear and continuous structure (such as rivers with their banks or the traditional systems for marking field boundaries)** or their function as stepping stones (such as ponds or small woods), are essential for the migration, dispersal and genetic exchange of wild species.

Article 10, Council Directive 92/43/EEC

It's the nature of the job

Shooting & Conservation Magazine January-February 2013

"Connectivity – This involves planting hedgerow and woodland and fencing off river banks to connect woodlands and provide wildlife corridors for less mobile species"

Aspen International **Network Elements** bridging science, policy and practice Berger and and a solar and and the solar strate in the solar of the solar and Core area land cover Landscape corridor Core area Stepping stone corridor Core area habitat patches Linear comidor Bufferzone Restoration area 'permeable' areas Schematic example of an ecological network n n l

A Real Network

Calcareous Grassland Networks

Summary Statistics

	patch area (ha)	proportion of England	network area (ha)	proportion of England	total
woodland	543,362	4.2%	565,819	4.3%	1,109,181 (9%)
heathland	339,851	2.6%	59,454	0.5%	399,305 (3%)
grassland	127,745	1.0%	103,503	0.8%	231,248 (2%)
mire, fen & bog	479,337	3.7%	30,767	0.2%	510,104 (4%)
total	1,490,295	11.5%	759,543	5.8%	2,249,838 (18%)

Setting the Context

Aspen International

"Landscape connectivity can be defined as the degree to which the landscape facilitates or impedes the movement of species, genetic interchange and other ecological flows." - Santiago Saura (2009)

Structural vs Functional Connectivity

Genetic Exchange

Anemochory

Bullock, J.M. (2003) Ecography 26: 692–704.

Epizoochory - Internal

Aspen International **Epizoochory - External** bridging science, policy and practice

Lovari , S.et al. (2008) Ethology, 114: 886–896.

Migratory Movement

Invertebrate Movement

Bombus Radiotracking

Fields

Meadows

Village (buildings, gardens and roads)

Hagen, M. et al. (2011) PLoS ONE, 6(5): e19997.

Which Species Matter?

Vertigo geyeri^	Geyer's whorl snail	Rhinolophus ferrumequinum	Greater horseshoe bat
Vertigo angustior^	Narrow-mouthed whorl snail	Barbastella barbastellus	Barbastelle
Vertigo genesii^	Round-mouthed whorl snail	Myotis bechsteinii	Bechstein's bat
Vertigo moulinsiana^	Desmoulin's whorl snail	Tursiops truncatus	Bottlenose dolphin
Anisus vorticulus^	Ram's-horn snail	Phocoena phocoena	Harbour porpoise
Margaritifera margaritifera^	Freshwater pearl mussel	Lutra lutra	Otter
Coenagrion mercuriale	Southern damselfly	Halichoerus grypus	Grey seal
Euphydryas aurinia^	Marsh fritillary butterfly	Phoca vitulina	Common seal
Limoniscus violaceus^*	Violet click beetle	Buxbaumia viridis^	Green shield-moss
Gortyna borelii lunata*	Fisher's estuarine moth	Marsupella profunda ^	Western rustwort
Lucanus cervus	Stag beetle	Drepanocladus vernicosus	Slender green feather-moss
Austropotamobius pallipes	White-clawed crayfish	Petalophyllum ralfsii	Petalwort
Petromyzon marinus	Sea lamprey	Trichomanes speciosum	Killarney fern
Lampetra planeri	Brook lamprey	Rumex rupestris	Shore dock
Lampetra fluviatilis	River lamprey	Saxifraga hirculus^	Marsh saxifrage
Alosa alosa	Allis shad	Apium repens^	Creeping marshwort
Alosa fallax	Twaite shad	Gentianella anglica	Early gentian
Salmo salar	Atlantic salmon	Luronium natans	Floating water-plantain
Cobitis taenia	Spined loach	Najas flexilis	Slender naiad
Cottus gobio	Bullhead	Cypripedium calceolus^*	Lady's-slipper orchid
Triturus cristatus	Great crested newt	Liparis loeselii^	Fen orchid
Rhinolophus hipposideros	Lesser horseshoe bat		÷

Common Connectivity Models

Spatial Indicies (SIs) - nearest neighbour, patch proximity etc Graph Theory (GT) – <u>circuitscape</u>, <u>pathmatrix</u>, <u>beetle</u>etc Spatially Explicit Population Models (SEPMs) – <u>spom</u>, <u>vm</u>, <u>metaphor</u>etc Individual Based Models (IBMs) – <u>atlass</u>, <u>moab</u>, <u>swarm</u>etc Aspen International

bridging science, policy and prac

Key Messages

Patch connectivity is not the same as landscape connectivity Structural connectivity does not guarantee functional connectivity Landscape connectivity is species-specific Manage the matrix in combination with patches Real landscapes are not random – question models Landscape connectivity is not a panaecea – birth & death Landscape connectivity is inherently neither good nor bad Landscape connectivity is a dynamic concept Define areas of residual connectivity before restoration Analyse strategically but make decisions locally – situation specific

The Treachery of Images

Thank you for listening!

